ENGINEERING FRACTURE MECHANICS

CONTENTS

1. Overview of Fracture Mechanics	Slide no
1.1 Introduction	1
Introductioncontd.	3
Tension/Bending/Torsion	3
- Tensile test for a mild steel specimen, 1	
- Bending of a beam – four point bending, 2	
- Twisting of a circular shaft, 3	
Introductioncontd.	4
Yield Criteria	4
-Yield criteria, 1	
Introductioncontd.	5
• Buckling	5
- Buckling of columns for various end conditions, 1	
Introductioncontd.	6
 Fatigue Test / S-N Diagram 	6
- Fatigue test apparatus,1	
- S-N diagram for wrought steel, 2	
Introductioncontd.	7
 Conventional Design Approach 	7
- Conventional design approach, 1	
1.2 Spectacular Failures	8
Boston molasses disaster	14
Liberty ship failure	17
• Ductile – Brittle Transition	
- Ductile – brittle transition, 1	
Comet disaster	22
Aloha airlines Boeing fuselage failure	27
1.3 Lessons from Spectacular Failures	29
Summary	31
1.4 Fracture a Bane or a Boon?	32
1.5 Common Applications of Fracture/Fracture Prevention	33 25
1.6 Photoelastic Appreciation of Severity of a Crack	35
• Basics of Photoelasticity	35
- Visualisation of stress field in pure bending, i Drief introduction to abote electricity. 2	
- Brief introduction to photoelasticity, 2	
- Conventional photoelasticity, 5	
• Indicates Links for further reading.	
"-" Indicates the topics within a link	
NOTE: Slide numbering is separate for each chapter. Within a chapter, for each	

Link, the slides start with the slide no 1.

1.7 Historical Development	36
Healing of a crack in brittle materials (Glass)	37
Shadow photographs of crack branching process in plate glass	38
1.8 Fracture Mechanics is a Broad Area Covering Several Disciplines	39
1.9 LEFM and EPFM	41
Range of LEFM/EPFM	43
1.10 Modes of Loading	45
Mode I or opening mode	45
Mode II or sliding mode	46
Mode III or tearing mode	47
Summary	48
1.11 Fracture Mechanics should be Able to Answer the Following	
Questions	48a
1.12 New Test for Fracture Mechanics	49
1.13 Schematic Representation of the Fatigue Life Showing the Relative	
Proportion of Life for Crack Initiation and Propagation	50
1.14 Residual Strength Diagram	51
1.15 Fracture Mechanics – a Holistic Methodology	52
1.16 Fracture Parameters – a Summary	53
1.17 Typical Failures Initiated by a Crack	54
Helicopter bolt hole	54
Fracture of a rail section	54a
Multiple crack bolt failure	54b
Internal flaw in a crank shaft	54c
Fracture of a shaft under torsion	54d
1.18 Photoelastic Visualization of Crack-tip Stress Fields	55
Mode I	55
 Basics of Photoelasticity 	55
- Visualisation of stress field in pure bending, 1	
- Brief introduction to photoelasticity, 2	
- Conventional photoelasticity, 3	
Mode II	56
Mixed-mode	57
Multiple radial cracks	58
Cracks emanating from inner boundary	59
Cracks emanating from outer boundary	60
Interfacial crack	61
Bimaterial constant	62
Brazilian disc with centre crack	63
Brazilian disc with edge crack	66
Crack-tip stress fields in fiber-reinforced composites	67
1.19 Books/References	68

2. Crack Growth and Fracture Mechanisms	
2.1 Crack and Fracture Surface	1
2.2 Crack Growth Mechanisms	2
Fatigue crack growth model	3
Striations	4
Beachmarks	5
Stress corrosion cracking	7
Crack growth by stress corrosion	8
Active path dissolution	9
Hydrogen embrittlement	10
Film-induced cleavage	11
Methods to prevent stress corrosion cracking	13
Creep	14
Corrosion fatigue	15
Liquid metal embrittlement	16
2.3 Fracture Mechanisms	18
Brittle fracture	19
Transgranular	20
Intergranular	21
Ductile rupture	22
The mechanism	24
Cracked particles in Al-alloy	25
Ductile fracture of Al-Cu-Mg-alloy	26
3. Energy Release Rate	
3.1 Inglis Solution	1
3.2 Griffith's Dilemma	2
3.3 Surface Energy	3
3.4 Griffith's Realization	5
3.5 Surface Energy for Common Materials	6
3.6 Elastic Strain Energy	
In a linear spring	7
Under pure normal stress	8
Under pure shear stress	9
Considering all the stress components	10
3.7 Strain Energy in Terms of Applied Load	
Axial load	12
Torsion	13

Axial load	12
Torsion	13
Bending	14
3.8 Energy Release Rate (G) – Preliminaries	15
3.9 Changes in the Component When Crack Advances	16
3.10 Strain Energy Stored Under	
Constant load	17
Constant displacement	18
General loading	19
3.11 Strain Energy in the Presence of a Crack	20

3.12 Relaxation Analogy	21
3.13 Variation of Surface and Strain Energy in Fixed Grips	23
3.14 Validation of Griffith's Approach	25
3.15 Energy Release Rate – Definition	27
3.16 G in Terms of Change in Potential Energy	28
3.17 Change in Potential Energy Under	
Constant load	31
Constant displacement	32
3.18 Energy Release Rate by Compliance Approach	33
For constant loading	35
For constant displacement	36
3.19 Examples of Energy Release Rate Calculation	
Energy release rate for double cantilever beam	37
Design of a constant G specimen	38a
Energy release rate for edge cracked body subjected to a moment	39
3.20 Rigorous Derivation of Energy Release Rate	
Crack opening displacement	44
Energy release rate (based on displacement of crack faces)	47
Displacement components in terms of polar co-ordinates	49
Relation between K_1 and G_1	51
• Healing of a crack	
Healing of a crack in brittle materials (Glass) 1	
3.21 Necessary and Sufficient Conditions for Fracture	57
3.22 Graphical Representation of Condition of Fracture for a Brittle Material	58
3.22 Graphical Representation of Condition of Flacture for a Diffice Material	50
γ Curve	61
Shadow photographs of grack branching process	62
Simulation photographis of creek branching process	63
3.24 Irwin Orowan Extension of Griffith's Analysis	630
3.24 If will-Orowall Extension of Oriffith S Analysis 3.25 Pasistance to Crack Growth in High Strength Alloys	03a
Plane strain	64
Plane stress	0 4 65
Trance stress	05
4. Stress Field in a Plate with Circular/ Elliptical Hole	
4.1 Strength of Materials	1
4.2 Theory of Elasticity	3
4.3 Governing Equations for Three-dimensional Elasticity Problem	5
• Field Equations	5
- Equilibrium equations, 1	
- Strain – stress relations, 2	
- Stress – strain relations, 3	
- Strain – displacement, 4	
- Displacement – stress, 5	
Displacement formulation	5
Compatibility conditions	7

Stress formulation	10
4.4 Solution to Plane Elastic Problems	12
Plane stress	13
Plane strain	14
4.5 Stress Formulation in Solving Plane Elasticity Problems	15
Airy's stress function	17
Inverse approach	19
4.6 Forms of ϕ in Cartesian Co-ordinates	20
4.7 Beam under Uniformly Distributed Load	21
Boundary conditions	22
Stress field	23
Variation of stress components over the depth of the beam	24
4.8 Bi-harmonic Equation in Polar Co-ordinates	25
4.9 Forms of Stress Function in Polar Co-ordinates	26
4.10 Stress Concentration at a Circular Hole in a Tension Field	29
• Basics of Photoelasticity	29
- Visualisation of stress field in pure bending, 1	
- Brief introduction to photoelasticity, 2	
- Conventional photoelasticity, 3	
Simplification of the given problem	30
4.11 Principle of Superposition	32
Problem I	33
Boundary conditions	34
Solution	35
Problem II	36
Boundary conditions	37
Solution	38
4.12 Closed Form Stress Field for the Problem of a Large Plate in Uniaxial	
Tension with a Small Circular Hole	39
Variation of normal stress along the boundary of the hole	40
Variation of normal stress across the plate in a section	
containing the hole	41
4.13 Stress Field in a Plate with an Elliptical Hole	42
Elliptic co-ordinates	43
Expression for circumferential stress components	44
Variation of normal stress components across the plate	45
Normal stress as a function of the radius of curvature	46
4.14 Extremum Cases of the Elliptical Hole	47

5. Crack-tip Stress and Displacement Fields

5.1 Analytic Functions	1
Cauchy-Riemann conditions	4a
5.2 Modes of Loading	6
5.3 Westergaard Stress Functions	7

5.4 Cauchy-Riemann Conditions in Terms of Z	8
5.5 Mode I Stress Field Equations	9
Airy's stress function	9
• Cauchy – Riemann	
- Cauchy – Riemann, 1	
Airy's stress function – summary	16
Boundary conditions	18
Verification of the stress function	19
• Cauchy – Riemann	19
- Cauchy – Riemann, 1	
Origin shifting	21
5.6 Mathematical Definition of Stress Intensity Factor	23
5.7 Very Near-tip Stress Field Equations (Mode I)	
In terms of Westergaard stress functions	24
In terms of <i>r</i> and θ	26
Suitability of Westergaard's solution for practical problems	27
5.8 Role of Photoelasticity in Fracture Mechanics	28
 Basics of photoelasticity 	28
- Visualisation of stress field in pure bending, 1	
- Brief introduction to photoelasticity, 2	
- Conventional photoelasticity, 3	
Plot of theoretical isochromatics	29
Experimental isochromatics - for short cracks	30
Long cracks or cracks situated in stress concentration regions	31
5.9 Modified Westergaard Equations	32
Irwin's modification	32
Modifications by Tada, Paris and Irwin	34
5.10 Displacement Field (Mode I)	25
Plane stress	35
• Proof – Displacement field derivation	38
- Proor, 1 Diana atuain	20
Plane Strain Displacement fieldsummery (Westergoard function)	39 40
5 11 Very Near tip Displacement Field (Mode I)	42
Polar co. ordinates	43
Displacement field summary (Polar co-ordinates)	43
Combined expression of displacement field for both	++
nlane stress and strain	45
5 12 Crack Opening Displacement (Mode I)	46
5 13 Very Near-tip Stress Field Equations (Mode II)	49
Stress and displacement field (Westergaard function)	50
Origin shifting	51
Stress field in terms of r and θ	53
5.14 Very Near-tip Displacement Field (Mode II)	54
General expression for displacement field in Mode II	
(Near-tip field)	55

5.15 Generalised Westergaard Equations	56
Kolosov Muskhelishvili approach	57
Stress function Y	58
Stress field in terms of ψ and Y	59
Westergaard solution	60
Irwin's modification of Westergaard equations	61
Generalised Westergaard equations	62
5.16 William's Eigen Function Approach	65
Boundary conditions	67
William's stress function	74
Very near-tip stress field equations in polar co-ordinates	76
Six term solution in polar co-ordinates	77
5.17 Multi-parameter Stress Field Equations (Atluri and Kobayashi)	78
5.18 Geometrical Features of Experimental Fringes as a Function of	
Number of Parameters	
Isochromatics in Mode I	79
Isopachics $(\sigma_1 + \sigma_2)$ in Mode I	80
Isochromatics in mixed-mode (Mode I + Mode II)	81
Isopachics ($\sigma_1 + \sigma_2$) in mixed-mode (Mode I + Mode II)	83
5.19 Multi-parameter Displacement Field (Mode I + Mode II)	84
Displacement field as a function of parameters (Mode I)	85
Displacement field as a function of parameters	86
(Mode I + Mode II)	
5.20 Mode III – Governing Equation	87
Assumption of displacement field	88
Governing equation	89
Westergaard displacement function	90
Stress field	91
Displacement field	92
6 SIF for Various Geometries and Loading	
6.1 Analytical / Numerical / Experimental Techniques	1
6.2 SIF Evaluation Based on Stress Function	1 1a
Concentrated load	10 1b
Symmetric wedge load	2
Asymmetric wedge load	3
6.3 Green's Function Approach	4
6.4 Evenly Spaced Collinear Cracks in an Infinite Strip	5
6.5 Crack in a Plate of Finite Dimensions	7
6.6 SIF from Boundary Collocation	,
Finite plate with a central crack	7a
Edge crack in a large plate	9 7 a
Double edge crack	9h
6.7 Principle of Superposition	6C F0
Internally pressurised crack	90 10
Crack from a riveted hole	10
	11

7

6.8 SIF for Cracks in Three-dimensions	
SIF for embedded circular flaw	12
Elliptical crack in aircraft-engine crank shaft	13
Embedded elliptical flaw	14
6.9 Surface Cracks	15
Semi-elliptical surface crack	16
Growth of a semi-elliptical surface-crack	18
Shallow surface crack	20
Plastic zone correction	21
Flaw shape parameter	22
Front free-surface correction	23
Corner cracks	24
Nozzle crack in a nuclear pressure vessel	25
SIF for quarter elliptical crack	26
6.10 Direct Analysis of Surface Cracks	27
6.11 Selection of Fracture Toughness	
Through cracks	29
Surface and corner cracks	30
7. Evaluation of SIF by Experimental/ Numerical Methods	
7.1 Experimental Methods to Evaluate SIF	1
7.2 Numerical Methods to Evaluate SIF	2
7.3 SIF Evaluation by Photoelasticity	3
Irwin's two parameter method – methodology	3
 Background Information 	3
- Plot of theoretical isochromatics, 1	
- Experimental isochromatics for short cracks, 2	
- Modified Westergaard equations (Irwin's modification), 3	
Expressions for SIF	4
Zone of validity	5
• Influence of sign of σ_{0x} (<i>T</i> - stress)	5
- Influence of sign of σ_{0x} on Mode I isochromatics, 1	
- Influence of sign of σ_{0x} on Mode I isopachics, 2	
- Geometrical features of Mode II isochromatics and	
isopachics, 3	
- Geometrical features of mixed-mode isochromatics and	
isopachics, 4	
SIF evaluation for practical problems	6
Overdeterministic multi-parameter evaluation of stress field	7
Convergence criteria	12
Crack emanating from the outer boundary of an internally	
pressurised thick ring	13
Crack emanating from the inner boundary of an internally	
pressurised thick ring	14
Crack in the tensile root fillet of a spur gear	15
Isochromatics – mixed-mode	16

7.4 SIF Evaluation by Holography	16a
Isopachics in Mode I	17
Isopachics in mixed-mode	18
7.5 SIF Evaluation by Moiré	18a
Multi-parameter displacement field (Mode I + Mode II)	19
Displacement field as a function of parameters (Mode I)	20
Displacement field as a function of parameters (Mode I + Mode II)	21
7.6 SIF Evaluation by the Method of Caustics	22
Introduction	23
Formation of caustics	24
Caustic curve	25
Initial curve	26
Crack-tip caustics for Mode I, II and Mode III loadings	27
• Values of c and λ	27
- Values of c and λ . 1	
Crack-tip stress field equations (Mode I)	28
• Initial curve and caustic curve	28
- Initial curve for Mode L 1	20
- Equation of caustic curve (Mode I) 2	
- Crack-tip stress field equations (Mode II) 3	
- Initial curve for Mode II 4	
- Equation of caustic curve (Mode II) 5	
- Crack-tip stress field equations (Mode III) 6	
- Initial curve for Mode III 7	
- Equation of caustic curve (Mode III) 8	
- Summary of initial curve radii 9	
Minimum size of initial curve for accurate determination of SIF	29
Mixed-mode caustics (Mode I + Mode II)	30
Determination of SIF ratio	31
Geometry factor f	32
Caustics in ontically birefringent material	33
• Values of c and 2	33
• Values of c and λ	55
Flastic plastic caustics	35
Lintegral from caustics	33
J-integral from caustics	27
• Details of <i>J</i> -integral from caustics	57
- J-integral from caustics, 1	
- Mapping equations of caustics, 2	
- J-integral from causiles – summary, 5	20
7.7 SIF Evaluation by Strain Gauges	38 29
• Strain field at the crack tip (Mode I)	38
- Strain field at the crack tip (Mode I), 1	20
SIF evaluation using a single strain gauge	39
Strain field Selection of elubrational that	40
Selection of alpha and theta	41
SIF evaluation by a single strain gauge – summary	44

7.8 Other Applications of Strain Gauges	
Crack detection gauges	45
Crack propagation gauges	46
7.9 Evaluation of Fracture Parameters Using Finite Elements	47
• Basics of Finite Element	47
- Basics of finite element (FEM), 1	
- Isoparametric element, 3	
- Shape functions, 4	
- Three noded triangular element, 6	
- Jacobian matrix, 7	
- Stress tensor, 8	
- Stiffness matrix, 9	
7.10 Special Elements and the Discretisation Scheme	
Quarter point element (QPE)	48
Isoparametric element and quarter point element	49
Singularity elements – 2D	50
Singularity elements – 3D	51
Requirement for isoparametric elements to model singularity	52
 Proof and Investigation of the Nature of Singularity 	52
- Position of midside node to simulate singularity, 1	
- One-dimensional quadratic isoparametric elements, 2	
- Investigation of the nature of singularity, 6	
Representation of singularities using finite elements	53
Design of mesh pattern – Souma and Schwemmer	54
Design of mesh pattern – Menandro et al	56
Design of mesh pattern – ANSYS	57
Size of QPE	58
Transition elements	60
Single edge notched specimen under tensile load	61
Comparison of experimental and FE analysis of SEN specimen	62
7.11 Methods of SIF Evaluation	63
Quarter point displacement	64
Displacement extrapolation	65
Energy release rate (G_{total})	66
Virtual crack extension (VCE) technique – Parks and Hellen	67
VCE – Stiffness derivative approach	68
Virtual crack closure integral (VCCI)	72a
FEM evaluation of <i>J</i> -integral	73
• <i>J</i> -integral	73
- Path independent integral, 1	
- J-integral, 3	
Gauss quadrature rule	75
Relation between K and J	76
J-Integral Using ANSYS	77
Steps to calculate <i>J</i> -integral	78
Normalised SIF Obtained by Different Methods	82

Model calculation	82
- Model calculation, 1	
Error in percentage	83
Discussion of SIF evaluation by various methods	84a
Evaluation of mixed-mode SIF by FEM	84b
7.12 References	85

8. Modeling of Plastic Deformation at the Crack-tip

8.1 Range of LEFM/EPFM	1
8.2 Small Scale Yielding (SSY)	2
8.3 Methods of Evaluating Plastic Zone	3
Principal stresses (Mode I)	5
Yield criteria	6
Material model for plastic behaviour	7
Plastic zone length using Tresca yield criterion (Simplistic model)	8
8.4 Plastic Zone Shape (Approximate)	9
Plane stress	10
Plane strain	11
Shape of plastic zone in Mode I – Tresca yield criterion	12
Shape of plastic zone in Mode I – von Mises yield criterion	13
Shape of plastic zone in Mode II – von Mises yield criterion	13a
Shape of plastic zone in Mode III –von Mises yield criterion	13b
8.5 Effective Crack Length	14
8.6 Irwin's Model (Elasto-plastic Analysis)	15
Plane stress	16
Plane strain	21
8.7 Dugdale's Approach (Elastic Analysis)	24
K_{δ} From Green's function approach	26
Experimental work of Hahn and Rosenfield	28a
8.8 Plastic Zone Lengths – a Summary	29
8.9 Correction for Crack Length – a Summary	30
8.10 Classification of Plane Stress/Plane Strain Based on Plastic Zone Size	31
8.11 Estimation of Minimum Thickness of Fracture Toughness Test Specimer	n 32
8.12 Estimation of SIF Considering Plastic Zone Size	
Use of Irwin's model in plane stress (Infinite plate)	33
Correction of SIF for a finite plate	35
Steps for an iterative evaluation	36
8.13 Variation of Plastic Zone Shape Over the Thickness of the Specimen	37
8.14 Influence of Plastic Deformation on the Nature of Fracture	39
Slip planes in plane strain	40
Slip planes in plane stress	41
Transition of plane strain to plane stress along the length	10
of the specimen	42
Evidence of slip planes in plane stress	43

11

9. Fracture Toughness Testing	
9.1 Fracture Toughness Testing	1
9.2 Fracture Toughness as a Function of Specimen Thickness	2
9.3 Plane Strain Fracture Toughness Testing	
Fracture toughness – a material property	3
Requirements of the test	4
Candidate fracture toughness	5
9.4 Specimens for Fracture Toughness Test	6
Compact tension (CT) specimen	7
Three point bend specimen	8
C-specimen/ DCT specimen	9
9.5 Constraints on Specimen Dimensions	10
Approximate thickness required for valid $K_{\rm Ic}$ tests	11
9.6 Chevron Notch	12
9.7 Fatigue Pre-cracking Restrictions	13
9.8 Experimental Procedure	14
Clip gauge to measure CMOD	15
• Clip gauge	
- Clip gauge, 1	
Measurement of load at fracture	16
• Pop-in Phenomena	16
- Load vs. CMOD, 1	
- <i>R</i> -curve to explain pop-in, 2	
Influence of specimen thickness on the nature of specimen failure	18
9.9 Measurement and Acceptance Criteria of Crack Length	20
9.10 Selection of Specimen from Plate Stock	22
9.11 Plane Strain Fracture Toughness $K_{ m Ic}$ for Selected Engineering Alloys	23
9.12 Plane Stress Fracture Toughness Testing	26
Anti-buckling guide	28
Influence of panel width in Al alloys	29
Existence of stable fracture by <i>R</i> -curve	30

9.13 Residual Strength Diagram – General Nature32Panel of constant thickness – Engineering approach by Feddersen33Verification by experimental data35

10. Crack Initiation and Life Estimation

1
2
3
4
5
6
7
9

10.4 Crack Initiation and Catastrophic Failure	12 13
10.5 Eatigue Crack Growth Threshold $\Lambda K_{\rm c}$ for Selected Engineering Alloys	13
10.5 I dugue Clack Olowin Theshold, $\Delta R_{\rm th}$ for beletice Linghteening Anoys	
More Material Properties	13
- Fatigue crack growth threshold, $\Delta K_{\rm th}$ for selected	
engineering alloys, 1	
10.6 Schematic Representation of Fatigue Life Showing the Relative Proportion	
of Life for Crack Initiation and Propagation	14
10.7 Sigmoidal Curve	15
• Striations and Beachmarks	16
- Striations, 1	
- Beachmarks, 2	
Donahue et al law – to account Region I better	19
Forman law to account Region III better	20
Mathematical representation of complete sigmoidal curve	
(Erdogan and Ratwani)	21
Definition of stress ratio	22
Mean stress influence on fatigue crack growth	23
10.8 Crack Closure	24a
Crack closure – designers approach	24b
Crack closure – certain issues	24c
Empirical relations for $\Delta K_{\rm eff}$	24d
Crack closure – current focus	24e
Plasticity induced crack closure	25
Residual stress ahead of a crack in a cycle	25
Plastic wake in a propagating fatigue crack	26
Understanding crack closure	27a
Phase transformation induced crack closure	28
Wedge induced crack closure	28a
Oxide-induced closure	28a
Roughness induced closure	29
10.9 Influence of Overload on Crack Growth	30
Wheeler model	31
10.10 Environmental Effects on the Fatigue Crack Growth Rate Curve	32
10.11 Issues in Fatigue Crack Growth Calculations	34
10.12 Summary of Empirical Fatigue Crack Growth Models	35
10.13 Crack Initiation as a Function of Radius of Curvature	37
Intrusion and extrusion	38 20
Intrusion and extrusion – evidence of slip bands	39 40
10.14 Damage Tolerance Approach	40 44
Damage tolerance – summary	44

11. Crack Arrest / Repair Methodologies

11.1 Need for Crack Arrest/Delay in Crack Re-initiation	1
11.2 Crack Arrest Methodologies	2

11.3 Patched Cracks	3
Photoelastic investigation of patched cracks	4
Visual assessment of patching effectiveness	5
SIF of unpatched crack	6
Mixed-field Isochromatics	
- Mixed-field isochromatics, 1	
SIF of one sided patched crack	7
SIF of double sided patched crack	8
Comparison of SIF	9
11.4 Hole as a Crack Arrester	10
Photoelastic evaluation of SIF	11
Effect of hole in reducing the crack growth rate	12
11.5 Self Healing – a Methodology for Crack Arrest	13
Self healing composite	14
The autonomic healing concept	15
Applications	16
11.6 Crack Repair by Metal Stitching	17
Configuration of metallic stitch	18
Arrangement of locking studs and layout of metallic stitch	19
Locks	20
C-series stitching pins	21
Sequence of metal stitching operation	22
Application of metal stitching operation	23
Salient features of metal stitching	24
12. J-Integral	
12.1 Path Independent Integrals	1
12.2 J-Integral	3
J-integral – summary	4
12.3 J-integral of Double Cantilever Beam Specimen	6
12.4 Elasto-plastic Material Behaviour	8
12.5 Intricacies in Experimental Determination of J	8a
Graphical interpretation of J	9
Single specimen approach	10
J for bend specimen	11
• Proof for <i>J</i> for bend specimen	11
- Estimation of J from bend experiment, 1	
12.6 J as a Stress Intensity Parameter	13
12.7 HRR Field	15

13. Mixed-mode Fracture 13.1 Introduction

13.1 Introduction	1
13.2 Crack Growth Directions	2
13.3 Energy Balance Criterion	3

Irwin's criterion in terms of SIF	4
Irwin's mixed-mode (I + II) fracture envelope	5
13.4 Criteria that Allow Estimation of Crack Growth Direction	6
13.5 Maximum Principal Stress Criterion	7
Estimation of crack growth angle	8
Experimental comparison of crack growth direction	9
Condition for onset of fracture	10
Experimental validation	11
13.6 Strain Energy Density Criterion	12
13.7 Criteria for Onset of Fracture in Mixed-mode Loading	13

14. Exercise Problems

Assignment No.1 Review of Solid Mechanics Assignment No.2 Overview of Fracture Mechanics Assignment No.3 Mechanisms of Crack Growth and Fracture Assignment No.4 Energy Release Rate, Compliance Approach Assignment No.5 Crack-tip Stress Field Equation Assignment No.6 Stress Intensity Factor Evaluation Assignment No.7 Plastic Zone, Irwin and Dugdale Model Assignment No.8 Fracture Toughness, Residual Strength Diagram Assignment No.9 Crack Growth Studies Assignment No.10 Crack Arrest/Repair Methodologies Assignment No.11 J-Integral Assignment No.12 Mixed-mode Fracture Assignment No.13 Experimental and Numerical Evaluation of SIF

<u>Notes</u>

In the course content, the items with a bullet "•" indicate the links provided for further study/ clarification.

Main menu

For simplicity, in the main menu of the e-book, the details regarding the link slides are not given.

Search feature

The search feature can accept any of the words/phrases available in this detailed course content (including the slides in the links) for searching the course.